AuREUS System Technology, invented by Carvey Ehren Maigue from Mapua University in Manila, the Philippines is this year’s James Dyson Awards Sustainability Winner
2020 marked a record-breaking year for the James Dyson Award, with the highest number of entries ever submitted and largest amount of prize money given to inventors. The Award opened for entries in March against the backdrop of a global crisis. Yet this year’s entrants have shown perseverance and determination to continue their research and development, ensuring pioneering ideas are shared with the world to shape our futures.
The First Sustainability Winner
This year, for the first time ever, James Dyson Awards chose a Sustainability Winner who will receive £30,000 to help develop their inventions.
The AuREUS System is an evolution for walls/windows, and uses technology synthesised from upcycled crop waste to absorb stray UV light from sunlight and convert it to clean renewable electricity.
It champions the issues of UV sequestration, better access to solar energy for climate change mitigation and supporting the local agriculture industry hit by calamities by upcycling crops that would otherwise be considered wastes thus, mitigating farmer loss.
The problem
Fossil fuels continue to account for over 81% of global energy product according to the International Energy Agency. It is estimated that, if we continue to burn fossil fuels at the current rate, global supplies of gas and oil will deplete by 2060. As a result, accessible and effective renewable alternatives need to be prioritised. While renewable energy uptake and solutions continue to grow, many can only generate electricity in the right environmental conditions. For example, Solar panels can only capture and convert visible light into renewable energy and must be facing the sun to do so. What is more, solar farms are only built horizontally too, never vertically and are often placed on prime arable farmland.
The solution
AuREUS System Technology, invented by Carvey Ehren Maigue from Mapua University in Manila, the Philippines, is a material that can be attached to a pre-existing structure or surface to harvest UV light and convert this into visible light to generate electricity.
Using ultraviolet rays, the sun could be shining, or it could be cloudy, Carvey’s material will still generate electricity. The particles in his material absorb UV light causing them to glow. As the particles “rest” they remove excess energy. This excess energy bleeds out of the material as visible light, which can then be transformed into electricity.
Current prototypes successfully achieve this on windows and external building structures. Not only has Carvey invented an efficient process to generate renewable energy, but the materials he uses to do so create a closed-loop design process, so nothing is wasted. This is because Carvey uses a substrate extracted from waste crops to create a durable, translucent and mouldable material as the basis for AuREUS.
“As a farmer, I see great potential in Carvey’s technology to generate clean renewable energy. AuREUS System Technology conserves space using pre-existing structures, utilises current resources and waste streams, and supports local agricultural communities. His bright idea to use upcycled crop waste develops a closed loop system. This element of his invention is particularly clever and shows the close link between farming and technology.” James Dyson, Founder and Chief Engineer at Dyson.
Carvey says, “Winning the James Dyson Award is both a beginning and an end. It marked the end of years of doubting whether my idea would find global relevance. It marks the beginning of the journey of finally bringing AuREUS System Technology to the world. I want to create a better form of renewable energy that uses the world’s natural resources, is close to people’s lives, forging achievable paths and rallying towards a sustainable and regenerative future.”
How it works
Both AuREUS devices (Borealis Solar Window and Astralis Solar Wall) uses the same technology derived from the phenomena that governs the beautiful Northern and Southern lights. High energy particles are absorbed by luminescent particles that re-emit them as visible light. Similar type of luminescent particles (derivable from certain fruits and vegetables) were suspended in a resin substrate and is used as the core technology on both devices.
When hit by UV light, the particles absorb and re-emit visible light along the edges due to internal reflectance. PV cells are placed along the edges to capture the visible light emitted. The captured visible light are then converted to DC electricity. Regulating circuits will process the voltage output to allow battery charging, storage, or direct utilisation of electricity.
Design process
The idea evolved from continuous pivots and iteration from the simple idea of wanting to capture UV light to better the solar technology industry and contribute to creating a sustainable and regenerative environment. Conventional PV cells lack the capability to capture high energy UV light.
Creating better materials with such capability has been the journey for 2017 but led to failure. A workaround has been found after taking inspiration from the beautiful Aurora lights. Instead to directly converting UV to electricity, it can instead be degraded first to visible light (solar wind radiation to aurora lights) then later capture the photons instead using conventional PV cells.
A candidate to mediate the light degradation principle is the use of Quantum dots. Come 2018, quantum dot technology has been researched but proved to be costly and would take along time to be market ready. By chance, in a dark pub, inspiration was drawn from glowing neon plates when exposed to blacklight. 2019 ended with a full academic thesis and several prototypes proving that the concept is feasible.
2020, the possibility of using local fruits and vegetable dyes as key particles for enabling the technology has been focused on. Currently 78 types of local crops have been tested and 9 showed high potential.
How it is different
[VS Quantum Dot Solar Windows:] AuREUS used cheaper materials and as of 2019 has been applied and tested for mech and acoustic properties for building settings. In terms of application, AuREUS has been constantly leading. [VS Solar Panels:] AuREUS can function even when not directly facing the sun, it can rely on UV scattering through clouds and by UV light bouncing along walls, pavements, other buildings
This will enable the construction of a Vertical Solar Farm even with a small lot area. This is highly applicable for skyscrapers in urban settings allowing access to clean renewable electricity. [VS Commercial Grade Windows:] glass cladding used in buildings use special films that reflect UV away from the building.
This causes induced UV exposure to people outside. AuREUS absorbs UV light instead, protecting people both indoors and outdoors. [VS Crop Waste Disposal:] AuREUS upcycles fruit and vegetable scraps giving life to materials considered as trash.
Future plans
R&D: Additional research will be done on extracting needed luminescent particles to allow 100% (from the current 80%) sourcing of dyes from fruits and vegetables instead of chemical ones.
Currently, among the 5 colours used (Red, Orange, Yellow, Green, and Blue) a stable alternative to the blue dye has not been successfully made yet. Success in this area will bring sustainability to a full circle.
Manufacturing: Currently AuREUS is standing at a 30 panel/mo. production. Additional funding can allow the creation of a team and facility that can increase current capacity
Future: Advances in forming for chassis in solar powered transport.
Source: https://www.jamesdysonaward.org